
Integrated Detection of Attacks Against Browsers,
Web Applications and Databases

C. Criscione, G. Salvaneschi, F. Maggi, S. Zanero

Dipartimento di Elettronica e Informazione — Politecnico di Milano

Abstract—Anomaly-based techniques were exploited success-
fully to implement protection mechanisms for various systems.
Recently, these approaches have been ported to the web domain
under the name of “web application anomaly detectors” (or
firewalls) with promising results. In particular, those capable
of automatically building specifications, or models, of the pro-
tected application by observing its traffic (e.g., network packets,
system calls, or HTTP requests and responses) are particularly
interesting, since they can be deployed with little effort.

Typically, the detection accuracy of these systems is signif-
icantly influenced by the model building phase (often called
training), which clearly depends upon the quality of the observed
traffic, which should resemble the normal activity of the protected
application and must be also free from attacks. Otherwise,
detection may result in significant amounts of false positives
(i.e., benign events flagged as anomalous) and negatives (i.e.,
undetected threats).

In this work we describe Masibty, a web application anomaly
detector that have some interesting properties. First, it requires
the training data not to be attack-free. Secondly, not only it
protects the monitored application, it also detects and blocks
malicious client-side threats before they are sent to the browser.
Third, Masibty intercepts the queries before they are sent to the
database, correlates them with the corresponding HTTP requests
and blocks those deemed anomalous.

Both the accuracy and the performance have been evaluated on
real-world web applications with interesting results. The system
is almost not influenced by the presence of attacks in the training
data and shows only a negligible amount of false positives,
although this is paid in terms of a slight performance overhead.

I. INTRODUCTION

In the field of computer security, without doubts the pro-

tection of web applications against attacks is a critical and

current research issue. Web applications are gaining more and

more popularity, due to their ease of use and development

and to the ubiquity of the Internet — and in particular, the

Web — in every day’s life [1]. At the same time, they are

usually developed with less attention to security constraints,

due to different development models being employed; as a

result, they have become the prime source of vulnerabilities

in enterprise information systems. During 2006, the Web

Application Security Consortium reported 148,029 different

vulnerabilities affecting web applications: this translates to

roughly 85% of the audited applications having at least one

vulnerability [2]. Similarly, Symantec reported an increase

equal to 125% of web application vulnerabilities between 2007

and 2008 [3].

Various taxonomies have been proposed for web threats,

such as [4], [5], [6]. SQL injections seem to be the most

commonly exploited attack vector. The goal of such attacks

is usually either to control the server, or to obtain sensitive

data. However, the current trend in web application attacks is

the ever increasing rate of attacks carried out to compromise a

host and use it for the distribution of malware (e.g., spy-ware,

bots) or to deploy a phishing or spamming kit [7]. This does

not come as a surprise, considering that PhishTank.com, for

example, reports about 130,000 confirmed phishing websites

over the same year. This shows how prevalent client-side

attacks, such as the very common cross-site scripting, are

becoming.

This creates a need for protection mechanisms to prevent

the malicious content from being deployed on a host that runs

a vulnerable web application. In addition, such a mechanism

should avoid further spreading of the malicious content by

protecting the visitors of a site already compromised. In this

scenario, the challenge is that often attacks are not brought

against known, off-the-shelf targets, but against custom appli-

cations. As such, they are by any definition zero-day attacks

(i.e., that exploit vulnerabilities that are unknown before their

use). This makes substantially ineffective the traditional and

well developed concept of misuse detection, which is based

on the exhaustive enumeration of all the known threats. On

the other hand, anomaly-based techniques have the desirable

property of protecting also against totally novel attacks. In fact,

they model the normal behavior of the protected system (e.g.,

a web application) and detect deviations, called anomalies —

under the assumption that attacks always cause anomalies. In

this context, the term “normal behavior” typically refers to

the set of features (e.g., the frequency of certain bytes in

a network packet, the length of a string variable) extracted

from the traffic, and then combined in such a way to build

the models exploited to recognize anomalies (e.g., unexpected

bytes frequencies, an out of bounds string length).

In this work, we describe Masibty, a web application

anomaly detector that attempt to mitigate the two aforemen-

tioned major drawbacks (i.e., false positives due to inaccurate

models and false negatives due to the presence of attacks in the

training). Masibty is able to detect a real-world threats against

the clients (e.g., malicious JavaScript code, trying to exploit

browser vulnerabilities), the application (e.g., cross-site script-

ing, permanent content injection), and the database layer (e.g.,

SQL injection). A prototype of Masibty is evaluated on a set

of real-world attacks against publicly available applications,

using both simple and mutated versions of exploits, in order

to assess the resilience to evasion. We can identify three key

improvements in this paper:

2009 European Conference on Computer Network Defense

978-0-7695-3983-6/09 $26.00 © 2009 IEEE

DOI 10.1109/EC2ND.2009.13

37

• models are designed with the explicit goal of not requir-

ing an attack-free dataset for training, which is an irre-

alistic requirement in real-world applications. Even if in

[8] techniques are suggested to filter outliers (i.e., attacks)

from the training data, in absence of a ground truth there

can be no guarantee that the dataset will be effectively

free of attacks. Using such techniques before training

Masibty would surely improve its detection capabilities.

• Our approach intercepts and process both HTTP requests

and responses and protects against both server-side and

client-side attacks, an extremely important feature in the

upcoming “Web 2.0” era of highly interactive websites

based mainly on user contributed content. In particular,

we devised two novel anomaly detection models —

referred to as “engines” — based on the representation

of the responses as trees.

• Masibty incorporates an optional data protection compo-

nent, which extracts and parses the SQL queries sent to

the database server. This component is part of the analysis

of HTTP requests, and thus is not merely a reverse proxy

to the database. In fact, it allows to bind the requests to

the SQL queries that they generate, directly or indirectly.

Hence, queries can be modeled although are not explicitly

passed as a parameter of the HTTP requests.

In addition, Masibty has the advantages of a highly modular

architecture, which easily allows to add additional detection

engines based on new techniques. A similar modular approach

was proposed in [9], however our architecture further explores

the possibility of modularity in decoupling not only the

engines aimed to anomaly identification, but also the modules

that implement possible reactions to an anomaly, and the way

in which information from the different engines is combined

together.

II. RELATED WORKS

Most of the traditional works on network intrusion detec-

tion focus on misuse-based or anomaly-based recognition of

attack signatures. However, traffic generated from an attack

to a web application — except for brute force attacks or

similar events — is likely to be very similar to normal traffic

because, since HTTP is a text based protocol, it is always

possible to encapsulate an attack at application layer without

creating a packet that is anomalous if inspected at network

layer. Writing generic network-layer signatures for web-based

attacks is thus troublesome, and a source of false positives.

On the other hand, host-based IDSs were typically designed

to monitor the processes on the protected system (e.g. the web

server daemon) rather than the web applications they run. A

successful example of protocol-aware anomaly detection based

on low level data is presented in [10].

A more effective approach to the specific problem of

anomaly detection for web applications is the inspection of

user-supplied parameters. This problem is similar to recent

developments in host-based anomaly detection on system calls,

taking into account their parameters content. In [11], [12] a

set of models were introduced to deal with various arguments

(e.g., strings, integers, tokens). Using some of the concepts

introduced in these seminal works, and extending them to in-

corporate sequence analysis and inter-argument relationships,

a prototype named S2A2DE was proposed in [13], [14]. The

concepts of [11] were ported to the web application context

in [15], [9], by replacing the concept of system call with the

URI of the requested resources, and the concept of system

call parameter with the parameters passed to the URI handler.

In other words, any web application is modeled as a set of

URIs, each with an associated array of attributes. For each

URI an ensemble of models is then generated. This approach,

however, makes the prototype unable to distinguish between

different behaviors of the same path, while it is common —

especially for small-sized web applications — to rely on a

single path to perform completely different tasks depending

on the parameters’ values. This issue can be mitigated through

the use of clustering on arguments, as shown in [14]. A system

based on a variation of this approach was proposed in [16],

where the anomaly detection was performed on a reverse

proxy — similarly to Masibty— and the application data was

distributed between many databases. Anomalous queries are

rerouted to databases containing information of lower sensitiv-

ity, accordingly to the degree of anomaly. The deployment of

this system in the real world, however, would require extensive

redesign to make the protected application resilient to missing

data and, in addition, data must be separated according to its

sensitivity. An interesting alternative to modeling parameters

is proposed in [17], where kernel methods are exploited to

model the features of the whole HTTP requests, not only of

the parameters.

More specialized works have targeted separately XSS and

SQL injection attacks. In [18] a client-side proxy was used

to detect harmful content (e.g., DOM nodes) supplied by the

user and sent back by the server, using a technique similar to

the one implemented in web vulnerability scanners [19]. This

technology, however, works only on reflected XSS attacks, and

not on persistent attacks where the injected malicious code is

permanently stored on the server-side and is delivered to the

browser at a later time. In [20] a client-side solution based

on the idea of data tainting is used to address the leakage of

sensitive data from the user browser to an aggressor through

the use of XSS attacks. Implementations of the same concept

are also proposed in [21], [22]. However, nowadays’ XSS

attacks can perform more sophisticated tasks. Examples are

the many attacks against social networking websites, which

perform queries on the site without actually moving sensitive

information around. The idea of a client side proxy was further

exploited in [23]. It must be noted that all these techniques

are client-side protections and, as such, they assume user

awareness to security. In addition, they are not really anomaly-

based as much as they are generalized misuse based system

with broad rules to block specific attacks.

In [24] a method to identify variations of SQL query

structures is proposed, by the means of a Java library which

validates user-supplied parameters and compares the structure

of each query before and after their insertion. The approach

is interesting although it requires to modify large portions of

code, since every line which contains SQL statements and

queries needs to be rewritten manually, making the effort

38

similar to a full code review for implementing proper filtering

in the application. In [25], [26], alternative learning-based

approaches to the problem of detection of SQL injections

are proposed. For instance, in [26] a server-side component

is embedded in the web server, and analyzes SQL queries

with techniques similar to [15], [12], generating models for

user supplied input. However, to decrease false positives the

developer must explicitly define database field types. This can

be a lengthy process for complex applications. The major

shortcoming of this architecture, however, is its inability to

generalize the structure of a query: while most of the queries

produced by web applications have a rather static look, thus

allowing for exact profiling, there are many examples where

the actual structure of a query is generated by user-supplied

parameters. Since there is no way to learn the whole input

space (as far as structure is concerned), no protection can

be expected for these queries. An alternative approach, using

static analysis, is presented in [27].

III. MASIBTY: A FRAMEWORK FOR WEB APPLICATION

INTRUSION PREVENTION

Besides the plus of being highly modular, Masibty is de-

signed to minimize the impact on any existing infrastructure.

More importantly, we specifically structured the system not

to require an attack-free dataset for training, as this is a

requirement not compatible with a real world deployment.

As depicted in Figure 1, Masibty is composed of two parts,

both easily portable to different languages and platforms:

• a reverse proxy, which is a standalone application cur-

rently developed on top of the Jetty HTTP server;

• an application database library that monitors SQL calls.

A proof-of-concept implementation was developed in

PHP for MySQL databases and can be easily reimple-

mented for any other language, or extended to support

other databases, since it consists in an extremely unob-

trusive procedure.

An important feature of Masibty is that the proxy, by only

interacting with the application in a black box fashion, can

detect and block attacks targeted at both servers and clients.

Although some client-side exploits can be identified just by

examining the HTTP requests, in many cases analysis of the

responses is needed to achieve decent levels of accuracy.

The application database library is optional and allows

deeper analysis of SQL queries generated by the application.

This is the only component of Masibty which is not language-

agnostic. We investigated the feasibility of a reverse SQL

proxy to avoid implementing a language-dependent compo-

nent, but this would only allow to analyze queries in an

isolated fashion, without binding them back to a specific

HTTP request or user interaction. This approach is prone to

false negatives whenever an aggressor is able to force the

application to produce a query which would be legal in a

different context, regardless of the anomaly detection model

in use (this can be seen as a mimicry-like evasion attempt).

Another possible alternative would have been to rewrite the

actual embedded libraries, but this was complex beyond our

purposes. It can certainly be done if the system is developed

for production use. However it would shift the burden from

modifying the applications to keeping up with a C code base

under constant development.

For the aforementioned reasons, we implemented this li-

brary as a wrapper for the MySQL libraries for PHP, namely

the MySQLi class and the mysql_* functions. A minimal

effort is required to the administrator to alter slightly the

application to be protected by modifying calls to mysql_*
functions into masibty_mysql_ invocations, and MySQLi
objects into MasibtyMySQLi objects. Since the interface

of every method has been respected, this changes can be ap-

plied through a trivial batch string replacement. Alternatively,

specific features of the language such as function overriding

or exception handling can be leveraged to achieve a fully

automated, unobtrusive deployment by rerouting the calls of

the functions in the original library to our library.

A. The concept of Entry Point

We modeled interactions between users and the protected

application within the bounds of the HTTP protocol. In

particular, our analysis is based on:

• URIs, e.g., /blog/add/, /blog/read/;

• parameters supplied, e.g., ?id=1&page=true;

• session context1, e.g., sequence of requests, cookies,

session identifiers.

In addition, other influencing factors can be considered. For

instance, multiple users might interact with the application in

such a way to impact the current user, and so on. However,

Masibty currently ignores such factors.

Starting from these observations, we defined the concept of

an Entry Point (EP) as the basic entity of an application. An EP

is basically a URI, further specialized depending on parameters

and session context. Therefore, the relationship between a EPs

and a URIs is not one-to-one, since in many applications use

the same scripts (or classes) perform different tasks, according

to the value of some parameters, of previous queries, sessions

or other factors. For instance, an application may rely on

a single controller that dispatches user interactions to

the various components of the application depending on a

command attribute in queries — while this is not a good

software engineering practice, is a quite common situation.

Clearly, this generates multiple EPs determined by the values

of the command.

For the aforementioned reasons, Masibty works on EPs.

The creation of EPs is therefore critical, and is delegated to

two different procedures. The simplest one directly associates

EPs to URIs. This is useful for small-sized applications, or

if it is known a priori that the association is one-to-one

(e.g., if URL rewriting is utilized). A more sophisticated

procedure can be used to group similar requests together, so

generating a set of EPs automatically. Its core is a clustering

algorithm that must be incremental, unsupervised, and able

to deal with categorical values. To this end, we used an

agglomerative, incremental online algorithm [28]. The distance

1meant as the synopsis of all the previous interactions between the user
and the application, encompassing all the data structures that have been built
(thus including database and file updates and so on)

39

Client HTTP inspection

AR

Web server SQL inspection

AR

DB server

PAnomaly: Token, Distribution,
Length, Presence, Order

XSSAnomaly: Crisp, JSEngine,
Template

QueryAnomaly: Structure

(ignored)

request request query query

responseresponse resultsresults

Figure 1. The logical structure of Masibty. Note that, the SQL inspection is visualized as a proxy just for clarity.

function between two URLs u and u′ is the normalization in

[0, 1] of d(u, u′) :=
∑3

i=1 di(u, u′). In particular, d1(u, u′) :=
||u|p − |u′|p| accounts for the number of parameters, | · |p, in

the URLs; d2(u, u′) :=
∑|u|p+|u′|p

j=0 1j counts the presence

(i.e., 0) and absence (i.e., 1) of the j-th parameter; d3(u, u′)
is simple and accounts for the difference in length of each

parameter found in the URLs. In addition, the algorithm prunes

out clusters with limited support (e.g. those that contain a low

number of instances) to cut out any outlier — possibly, an

attack — in the training set.

B. Overall Architecture

The core component of Masibty is called Anomaly Brain
(AB). It routes the HTTP requests and responses, captured by

the proxy or the application database library, to a number of

Anomaly Reasoners (ARs); this is performed either at learning

time or during detection. Figure 1 shows the information flow

and the ARs implemented. Requests or responses marked as

anomalous are handled by specific Reaction Managers (RMs).

ARs can be configured to be executed before or after the event

is forwarded for processing. If no anomaly is detected by the

pre-forwarding ARs, the action is let through (e.g., the request

is forwarded to the web server, or the query is executed on

the database). Next, it is routed to the post-forwarding ARs.

If cleared, the responses are sent back to the client.

The ARs make use of different Anomaly Engines (AEs).

Each of them models HTTP messages by means different

features (i.e., string length, number of parameters, sequence

of parameters). Thus, an AR can be effective at detecting

anomalies in the parameters, whereas another may focus on

client-side attacks. However, each AR has full access to any

information available to all of the Masibty components (e.g.,

an AR working on SQL queries has access to the full session

history). Since AEs work on EPs, requests coming from the

reverse proxy are first passed through the aforementioned

EP creation procedure, which clusters them (during learning)

or classifies them (at detection time). Features learned on

parameters by means of the AEs and used later in detection

phase are stored in a model base.

During training, each AE self-assesses its reliability by

calculating a trust level. During detection, the AEs generate

an anomaly score in [0, 1] for each handled action. These

outputs for AEs in the same AR are then combined to obtain

a single anomaly score. Each AR can use a different policy to

aggregate these values and can optionally take into account the

trust level. The final anomaly score is then compared against

an user-configured threshold to identify which events to flag

as anomalies. Although it may seem reasonable to combine

the output of all the AEs to obtain an overall anomaly value,

it must be noted that each reasoner captures only a narrow

subset of the information. Thus, an attack could be effectively

recognized by a single AR. Instead, a combination could lead

to the anomaly value being negatively balanced by another

AR. For this reason, we use Reaction Managers (RMs) to

handle independent actions to be performed after the detection

of an anomaly by a single AE. These action may range from

stopping the requests deemed malicious or simply reporting

alerts.

Each AR can have multiple RMs, each with a different

priority to allow handling of concurrent reactions. In partic-

ular, a RM can temporarily suspend any other RM with a

lower priority, effectively blocking execution of lower priority

reactions. Also, multiple different methods of reaction can be

activated depending on different thresholds of the anomaly

value.

IV. REASONERS AND ENGINES

We have currently implemented three anomaly reasoners.

PAnomaly and XSSAnomaly are built and used by the proxy

component, while QueryAnomaly is built and used by the

application database library. PAnomaly and QueryAnomaly
are pre-forwarding AR, whereas XSSAnomaly is executed on

HTTP responses.

A. PAnomaly

This AR detects anomalies in each request parameters and rely

on different AEs.

1) Order Engine: Since requests in web applications are

usually hard coded, whenever an EP is queried, the ordering of

the attributes will usually be the same, even if not all of them

are present. The Order Engine builds a probabilistic model

using a directed graph that represents the order in which the

parameters have been seen. Edges are labeled with the number

of times the origin precedes the other node, P , and the number

of times both nodes appeared in examined requests, T . As

example is in Figure 2(a)

At detection, the active edges for every incoming request

are identified. For instance, using the model in Figure 2(a), a

request containing parameters A, C, D activates of the edges

highlighted in Figure 2(b). The anomaly score is then com-

puted by identifying the edge with the lowest ratio between the

first and the second label. If an edge is completely missing, an

anomaly score of 1 is returned, otherwise the anomaly score is

40

F A E B C D
1/1 1/1

8/8

10/10

9/9

2/2

8/8

8/9

1/9 1/8

7/8

(a) Model at the end of the learning phase.

F A E B C D
1/1 1/1

8/8

10/10

9/9

2/2

8/8

8/9

1/9 1/8

7/8

(b) Active edges (non-dashed) on a request that contain the
parameters A, C, and D.

Figure 2. Two sample models generated by the Order Engine.

1−min(
{

P
T

}
). This algorithm has complexity O

(
N ·(N−1)

2

)
,

since every edge of the induced subgraph has to be generated

and evaluated. The worst case is a request with N elements.

The trust level takes into account how many infrequent

couples are present, because if a couple has been seen a very

small number of times there is too much variability to rely

on the results of this engine. Therefore, we compute the trust

level as avg
({

P
T

})
.

2) Presence Engine: Web applications usually handle a

small set of parameters associated with a certain EP and it

is unlikely that they will change, unless the client is trying

to perform some unwanted interaction. This AE checks for

expected or unknown parameters in each request. During

training, the presence of each parameter is recorded, along

with its appearance ratio across all the requests associated to

the same EP.

Detection leverages the relative sample distribution of

such ratios. The anomaly score is calculated as 1 −
min((M

T , min(
{

P
T

}
))), where M and P , respectively, indi-

cates the number of missing and present parameters, while

T is the total number of requests to the same EP. Thus, the

presence of an unknown attribute or of a very rare attribute

turns into a very high anomaly score.

The trust level is high if the presence of parameters is fairly

constant, while decreases if an application exhibits variations.

Thus, we calculate the trust level as 1− M
T .

3) Numbers Engine: Identifying those parameters that con-

tain only numbers, which are extremely common, can stop

a large share of injection-based attacks. To this end, during

training, we store two values for each parameter: A, the

number of times the attribute value was not a number, and

the number of observations of the attribute T . If X = A
T is

close to zero, the value is likely numerical. Obviously attacks

or application errors might have polluted the training set, so

an exact zero is rare.

This engine leverages the Yule-Simon (YS) distribution [29]

to associate a high anomaly score to very low values. We

generate the anomaly score S using S = YS(ρ, X) so that

only those parameters that are very likely to take numeric

values can actually generate high anomaly scores. In our

experiments we set ρ = 200.

The trust level, relies on how the anomaly score is calcu-

lated.

4) Token Engine: Sometimes a parameter only takes a

limited set of values, usually referred to as tokens. This engine

stores the admitted values and marks as anomalous any request

containing parameters with out-of-the-enumeration values.

Token identification is performed using the algorithm de-

scribed in [9]. Without going into the details, for each attribute

a function is initialized to 0 and incremented by 1 whenever

a new value for the attribute is seen, and is decremented

otherwise. The procedure then estimates the correlation of this

function vs. y = x, which models the fact that each item is a

new, unseen value. Negative correlation indicates non-random

values, i.e., tokens. The algorithm was trivially adapted to on-

line usage, by updating the sample mean and variance on-line

as opposed to in a batch fashion. In addition to the original

algorithm, we count the relative occurrences of each different
value.

Detection takes into account only those parameters iden-

tified as tokens. A high anomaly score is assigned to token

values that have never, or seldom, been seen during learning.

This is needed to minimize the influence of attacks in the

training set. In fact, the engine could have observed an attack

and included a malicious value in the allowed values for the

token. However, such values are just a minority and can then

be identified as the less frequent values a token has taken

during training, and label them as anomalous anyways. To this

end we resort again to the YS distribution, which is calculated

for each observed value v ∈ V leading to the anomaly score

S = YS(ρ, Nv·|V |
N), where Nv is the number of observations

of v, N =
∑

Nv is the total number of observations and V
is the set of all possible values.

Basically, the expected rate of appearance of each parameter

is estimated as the total number of observations for a certain

parameter divided by the number of different values observed.

Next, the ratio between the actual observation rate of a

parameter and its expected rate is calculated as a value in

[0, |V |].
As we previously explained, high anomaly values are as-

signed only if the ratio between the expected and the observed

rate of appearance is very low, according to the YS distribu-

tion.

The trust level is set to min (1, |max(−1, p)|). In other

words, if the correlation parameter p is p < −1 (thus the

attribute is very likely to be a token), we assign a value of 1 to

the trust level. Otherwise, we assign a linearly decreasing value

corresponding to the absolute value of the (linearly decreasing)

correlation parameter.

5) Distribution Engine: The distribution of symbols is

significant to distinguish the actual content of parameters that

are expected to contain strings. For instance, a parameter may

be designed to receive 10/14/2008 01:11AM while an

attacker could attempt to inject ’ and t=t;, which clearly

have a different set of symbols. This engine captures such devi-

ations by building a model of characters distribution through a

41

representation of the relative frequencies of occurrence. To this

end, we adapted to online use the algorithm proposed in [9] to

perform a variant of the Pearson χ2-test to determine whether

an observed value can be generated by the learned distribution.

The anomaly score is 1− p, where p is the p-value of the χ2-

test. The algorithm requires a single scan of the input and a

constant-time calculation, its complexity being thus O(n+k).
An appropriate trust level of this model is planned as a future

improvement. At the moment, this engine’s trust level is 1.

6) Length Engine: Most of the parameters of a web appli-

cation are not random in length. Some have fixed length (e.g.,

tokens, numeric identifiers), while some have a certain degree

of variance. Only a few are completely random in length,

most notably injection attempts. Long attributes are commonly

associated with overflows, and also XSS attacks can be quite

long. For instance, the shortest known XSS is 161 byte long

[30]. This engine estimates the unknown length distribution

for a given parameter in order to assess the anomaly of a

parameter of length l in the detection phase.

Once again, we adapted the algorithm described in [9]

to work online. No assumptions is made on the underlying

distribution, which is specified by means of the sample mean

μ and variance σ2, calculated from training data. Detection

is performed through the Chebyshev inequality, which deter-

mines an upper bound on the probability that the difference

between the value of a random variable x and the mean of the

distribution exceeds a certain threshold. Let t be the threshold

P(|x−μ| > t) < σ2

t2 . Therefore, the probability of a string of

size greater than l is P(|x−μ| > |l−μ|) < σ2

(l−μ)2 . Similarly

to the previous engine, the trust level is fixed at 1 and an

appropriate trust model is planned as a future work.

B. XSSAnomaly

This AR is aimed at detecting client side attacks. For

example, JavaScript-based manipulation of the DOM or simple

injection of contents into a web page, can be leveraged to

completely change the client’s perception of a page. A web

site could be defaced on the client side, or a phishing site

could overlap the original site, and so on. This reasoner detects

anomalies in the embedded (i.e., not included as a separate file)

code, and in the DOM. This allows to mitigate also more subtle

threats such as client-side page defacement. This reasoner has

to evaluate server response, thus is implemented as a post-

query reasoner.

The DOM tree is constructed from the response using

Gecko, a fast, open source parser and layout engine im-

plemented in C++, and accessible through XPCOM APIs,

wrapped by the Mozilla Parser Java library. The tree is then

decorated with the JavaScript content of each node, while

textual or otherwise non-JavaScript attributes are removed,

keeping only structural information. The resulting structures,

called Anomaly Tree, are used for both training and detection,

which are detailed for each of the two engines described below.

Depending on the AE adopted, two Anomaly Trees may be

identical or different with a certain, numerical degree.

1) Crisp Engine: This engine detects anomalies in both

DOM and JavaScript code. It utilizes the Anomaly Trees to

html
head title

body div
p em

p em

html
head title

body div

p em

p em

p em

Figure 3. Two DOMs of two requests that only differ by the number of
repetitions.

learn the normal structure of pages associated with a given EP,

assuming that requests to a single EP will be very similar to

each other (e.g. a template filled in with variable information).

In general, two DOM nodes are deemed as equal if and

only if both they match and their inline JavaScript code

is identical, if any. This may arise issues with JavaScript
generated dynamically (e.g., after a certain event), but makes

the engine resilient to mimicry attacks.

During learning, the first Anomaly Tree is simply recorded.

Subsequent trees are compared against the known ones. If

a perfect match (i.e., identical tree) is found, a counter

associated to each tree is incremented, otherwise the new

tree is recorded. A peculiar characteristic of this engine is

that it takes into account recurring content, frequent in data-

centric web pages (e.g., search results or items in an online

store). More precisely, trees are traversed in parallel and

whenever a mismatch is found, the largest sub-tree is checked

for descendants with identical structure. If a node causes a

mismatch and such a node is not equal to the next one in the

smaller tree — thus marking the end of the repetitions, the

trees are deemed different and stored separately. Otherwise, the

trees are considered identical, with a different set of repetitions

as shown in Figure 3. This single-pass algorithm is linear with

respect to the number of nodes of the largest tree.

Since any XSS injection is obtained by adding at least one

element to the DOM, any Anomaly Tree with no matching

learned trees is flagged as anomalous, with an anomaly score

of 1.

The trust level for a given Anomaly Tree and EP is

calculated during training as 1 − D
T , where D is the number

of different Anomaly Trees and T is the total number of

responses processed. If the ratio is low, and thus the number

of total queries is far greater in comparison to the number of

different Anomaly Trees, the AE can be trusted and thus it

returns a value which is very close to 1.

2) Template Engine: This engine is meant to be adopted on

highly-dynamic pages (e.g., forums, blogs, news aggregators).

During learning, Anomaly Trees are pruned by removing

nodes with no JavaScript content, including their descendants.

Then, a maximum number w of wild-card nodes are inserted;

higher values of w lead to better accuracy on complex pages.

This must be traded-off with a higher computational complex-

ity. The algorithm works as follows: it substitutes one node a

time (and its sub-tree) with a wild-card. Thus, if w = 1 wild-

card is allowed, a number of templates equal to the number

of nodes n is generated, one with each node substituted by a

wild-card. With w = 2 this grows to n ·(n−1) templates, with

all the possible combinations of 2 wild-cards. During learning,

this is done for each new Anomaly Tree. In case of a match

with a previously known template, a counter associated to the

template is incremented.

The learning algorithm is rather expensive as for each new

42

AND
=

AND
=

=

OR
=

=

Figure 4. Two pruned trees used by the application database library to model
an SQL query. The one on the right side is deemed anomalous.

tree is O(n2 + K · n), with w = 2, where n is the number

of nodes of the pruned Anomaly Tree and K is the number

of known templates (the n2 member is due to the template

generation routine, whereas the K · n term is due to the

comparisons against all the templates). The algorithm will

always generate some fundamental templates (e.g. a template

with just an <html /> node plus a wild-card) that match all,

or almost all, the response pages.

Detection is performed by testing the Anomaly Tree of any

generated result for compatibility against all the templates

built; the wild-card nodes validate any sub-tree starting at their

positions. If a tree matches every template, as is the case for

an EP with static content, a null anomaly score is returned.

Otherwise, a numeric value is calculated using the observation

rate of the highest non-matching template. The trust level is

the frequency of the highest matching template, or 0 in case

of EPs with no templates (i.e. no JavaScript code).

3) JS Engine: This AE uses a very simple technique to

model JavaScript code. To this end, the MD5 of each code

snippet extracted during the learning phase is stored. Although

this approach may lead to false positives, it is effective for

pages that reuse the same JavaScript code. For the same

reason, it does not account for the code generated at runtime,

also because this would require an excessive overhead due to

the need of interpreting the JavaScript.
Learning is straightforward, and its complexity is linear with

the number of JavaScript found in the new pages. During

detection, we once again leverage the YS distribution to assign

high anomaly scores to the MD5s that are infrequent in the

training sets (i.e., those that are suspected of being outliers),

as previously explained. In this case, the anomaly score is

X = YS(ρ, |F |
T) where F is the set of MD5s extracted

from total number T of training responses that contain scripts.

Clearly, the JavaScript that generate unknown MD5s is flagged

as anomalous regardless of its rate of appearance in the

training set.

The trust level is measured as avg
{

|F |
T

}
.

C. Application Database Library

This library analyzes the SQL queries before they are sent to

the database and is implemented within the web application’s

scope. Hence, it has full access to the application data, e.g.,

which script was invoked, which script generated the query.

Currently, the only implemented AE is the Structure Engine,

which relies on the parse tree of the queries. Contrarily to what

was done in [24], no modification to the queries is required.

In addition, as opposed to the method described in [27] based

on static analysis, our technique is dynamic.

Constants or user-supplied data are filtered from the trees,

while logical and arithmetic operators are kept. This may

allow mimicry evasions (e.g., a query where only the names

of the tables have been altered not detected as anomalous).

However, SQL injections often alter the structure of the query

dramatically.
Learning is performed by storing the trees corresponding

to each EP along with their frequency. Detection is performed

by comparing the tree obtained from the submitted query with

the stored ones. If the tree does not match any of the known

ones, the AE returns an anomaly score equal to 1; otherwise

it is R
R

, where R is the number of times the matching tree has

been observed, and R is the average number of appearance

calculated over all the trees belonging to the same EP.

V. EXPERIMENTAL RESULTS

We evaluated both the detection capabilities and the process-

ing overhead of Masibty on four real-world, PHP applications:

Artmedic Weblog, SineCMS, PHP-Nuke, and JAF. The MySQL
databases were manually populated with fake yet reasonable

data that resemble as close as possible a real-world deploy-

ment. We used the Apache web server protected by Masibty,

on Linux Ubuntu 8.10 running on a 2.50GHz machine with

4GB of RAM. In a real deployment, Masibty can be installed

on dedicated machines.
Masibty was trained on the HTTP messages and SQL

queries (PHP-Nuke only) generated during many interactions

between clients and the application. More precisely: 6647

requests to Artmedic Weblog, 324 to SineCMS, 1310 to PHP-
Nuke, and 902 to JAF. During training, we have tried to emu-

late both regular users and administrators. To test the resilience

to outliers, 1% of the requests were actually attacks that were

generated as follows. The exploits for the vulnerabilities were

selected by carefully monitoring the bugtraq mailing list during

late 2008. In addition, mutated versions of the attacks were

generated manually. Attacks included XSS attempts (e.g., we

used CVE-2006-0676 for PHP-Nuke), remote file inclusions

(e.g., we used CVE-2006-7128/6142 for JAF-CMS) and SQL

injections (e.g., we used CVE-2006-5525 for PHP-Nuke). The

large majority of these attacks were used to build the testing

dataset.
Results are summarized in Table I. On simple applications,

such as Artmedic Weblog and SineCMS, all the attacks inserted

were identified, with no false positives. Suspecting overfitting,

the results were manually inspected, and further mutated

versions of the attacks were inserted. Surprisingly, no evasion

attempt succeeded. On PHP-Nuke Masibty reported no false

positives and a non-negligible amount of false negatives on

some XSS attacks. Since JAF stores data on a flat file, the

SQL module was disabled. Nevertheless, the proxy module has

successfully recognized all 16 attacks. In JAF, an administrator

can include external HTML pages created. We exploited

this feature and submitted some rather complex pages also

containing JavaScript — obviously, training and testing dataset

contained a different set of pages. This caused 0.38% of false

positives. In all the cases but PHP-Nuke the attacks were

all detected by the XSSAnomaly and PAnomaly reasoners,

which both contributed to create an anomaly score beyond the

thresholds. In addition, the SQL injections against PHP-Nuke
were detected by the QueryAnomaly reasoner.

Globally, Masibty detected 95.75% of the attacks with

0.095% of false positives. For comparison with systems that

43

APPLICATION TOTAL REQ. ATTACK REQ. DR FPR

Artmedic 3357 16 100% 0.0%
SineCMS 442 4 100% 0.0%
PHP-Nuke 1200 24 83% 0.0%
JAF 800 16 100% 0.38%

Overall 5799 60 95.75% 0.095%

Table I
DETECTION CAPABILITIES FOR EACH APPLICATION. THE TOTAL

REQUESTS INCLUDE THE MALICIOUS REQUESTS.

were tested with a an attack-free training, we also ran an

additional test using a filtered training dataset and with no

evasion attempts. Under such rather irrealistic hypotheses,

Masibty detected 100% of the attacks with no false positives.

We also measured the throughput and the processing over-

head introduced by Masibty. To this end we first recorded an 8-

step navigation session so that each virtual client resembled a

human user. This generated 4 HTTP requests including HTML

content and images, making 32 HTTP requests overall. The

users were idle for between each interaction for a random

small amount of time. This resulted in 34s of idle time per

session. Then, we reproduced a closed queuing system with

an increasing number of customers, using HP LoadRunner
with the following workload profile: a gradually increasing

number of clients from 0 to 30 for the first 3 minutes.

Then, a constant number of clients for 5 minutes, and zero

during the last 2 minutes. The averages response time of the

base system is 0.01s per request. We measured an average

0.02s overhead introduced by Masibty. Not surprisingly, the

detection capabilities of the prototype are paid at the price of

a non-negligible overhead. However, a significant part of the

overhead can be reduced by re-implementing the tool using a

lower-level language, such as ANSI C, and by decoupling the

detection phase from the blocking phase, and make the former

working in passive mode.

VI. CONCLUSIONS

In this work we described Masibty, a prototype web ap-

plication firewall that has some interesting features and show

significant improvements with respect to other existing tools. It

can work under realistic assumptions (i.e., attack-free training

data) and can deal with applications with a complex structure

because of its sophisticated URL modeling algorithm. We

described and implemented an extensible, modular architecture

for the prototype, as well as a number of anomaly detection

models. We described a proxy module which is able to

identify both anomalies in parameters passed to the web

application, and anomalies in the structure of the resulting

pages, thus protecting the clients from malicious content. Also,

we implemented a PHP library that contains a set of models

for detecting anomalies in SQL queries through structural

analysis.

Some of the techniques for server-side analysis of both web

pages and SQL queries described in this paper are innovative

contributions. Also, we improved previous works and pro-

posed simplified but effective learning algorithms. We have

performed preliminary testing of our solution on four real-

world applications, obtaining promising results and confirming

the effectiveness of our approach. The overhead introduced is,

however, non-negligible but we believe it is mostly due to the

poorly-optimized prototype.

Future works include extensive testing and recording of

each model’s contribution to the anomaly score, which are

missing in our preliminary experiments. Furthermore, we are

devising an automatic mechanism for choosing between one-

to-one and many-to-many association between URIs and EPs.

We are also currently working on a reasoner able to perform

anomaly detection on headers and cookies, and a session-

tracking mechanism which would allow to take into account

the sequence of pages and queries performed by a single user.

Finally, we are testing the negotiation techniques we proposed

in [31] as an aggregation policy for the anomaly score.

REFERENCES

[1] Miniwatts Marketing Grp., “World Internet Usage Statistics,” http:
//www.internetworldstats.com/stats.htm, January 2009.

[2] M. Sutton, J. Grossman, S. Gordeychik, and M. Khera, “Web appli-
cation security consortium statistics,” Available online at http://www.
webappsec.org/projects/statistics/.

[3] D. Turner, M. Fossi, E. Johnson, T. Mark, J. Blackbird,
S. Entwise, M. K. Low, D. McKinney, and C. Wueest,
“Symantec Global Internet Security Threat Report – Trends for
2008,” http://eval.symantec.com/mktginfo/enterprise/white papers/
b-whitepaper internet security threat report xiv 04-2009.en-us.pdf,
Symantec Corporation, Tech. Rep. XIV, April 2009.

[4] J. Grossman and O. Shezaf, “Threat classification,” Web Application
Security Consortium, Tech. Rep., 2005.

[5] The Open Web Application Security Project, “The ten most critical web
application security vulnerabilities,” Available online at www.owasp.org.

[6] O. S. et al., “The web hacking incidents database annual report,” Web
Application Security Consortium, Tech. Rep., 2007.

[7] J. E. Dunn, “Do-it-yourself phishing kit found online,” Available on-
line at http://www.pcworld.com/article/128524/doityourself phishing
kit found online.html, Jan 2007.

[8] G. F. Cretu, A. Stavrou, M. E. Locasto, S. J. Stolfo, and A. D. Keromytis,
“Casting out demons: Sanitizing training data for anomaly sensors,”
Security and Privacy, IEEE Symposium on, vol. 0, pp. 81–95, 2008.

[9] C. Kruegel, G. Vigna, and W. Robertson, “A Multi-model Approach
to the Detection of Web-based Attacks,” Computer Networks, vol. 48,
no. 5, pp. 717–738, August 2005.

[10] Y. Song, S. J. Stolfo, and A. D. Keromytis, “Spectrogram: A mixture-
of-markov-chains model for anomaly detection in web traffic,” in Proc.
of the 16th Annual Network & Distributed System Security Symposium,
San Diego, CA, USA, February 2009.

[11] C. Kruegel, D. Mutz, F. Valeur, and G. Vigna, “On the Detection of
Anomalous System Call Arguments,” in Proceedings of the 2003 Euro-
pean Symposium on Research in Computer Security, Gjøvik, Norway,
October 2003.

[12] D. Mutz, F. Valeur, G. Vigna, and C. Kruegel, “Anomalous system call
detection,” in ACM Transactions on Information and System Security,
vol. 9, 2006, pp. 61–93.

[13] S. Zanero, “Unsupervised learning algorithms for intrusion detection,”
Ph.D. dissertation, Politecnico di Milano T.U., Milano, Italy, May 2006.

[14] F. Maggi, M. Matteucci, and S. Zanero, “Detecting intrusions through
system call sequence and argument analysis (preprint),” IEEE Transac-
tions on Dependable and Secure Computing, vol. 99, no. 1, 2009.

[15] C. Kruegel and G. Vigna, “Anomaly Detection of Web-based Attacks,”
in Proceedings of the 10th ACM Conference on Computer and Com-
munication Security (CCS ’03). Washington, DC: ACM Press, October
2003, pp. 251–261.

[16] F. Valeur, G. Vigna, C. Kruegel, and E. Kirda, “An Anomaly-driven
Reverse Proxy for Web Applications,” in Proceedings of the ACM
Symposium on Applied Computing (SAC), Dijon, France, April 2006.

[17] P. Düssel, C. Gehl, P. Laskov, and K. Rieck, “Incorporation of ap-
plication layer protocol syntax into anomaly detection,” in ICISS ’08:
Proceedings of the 4th International Conference on Information Systems
Security. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 188–202.

44

[18] O. Ismail, M. Etoh, Y. Kadobayashi, and S. Yamaguchi, “A Proposal and
Implementation of Automatic Detection/Collection System for Cross-
Site Scripting Vulnerability,” in International Conference on Advanced
Information Networking and Applications, 2004, p. 145.

[19] T. Gallagher, “Automated detection of cross site scripting vulnerabili-
ties,” European Patent Application EP1420562 (pending), October 2003.

[20] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Cross-Site Scripting Prevention with Dynamic Data Tainting and Static
Analysis,” in Proceeding of the Network and Distributed System Security
Symposium (NDSS), San Diego, CA, February 2007.

[21] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically Hardening Web Applications Using Precise Tainting,”
in 20th IFIP International Information Security Conference, Makuhari-
Messe, Chiba, Japan, June 2005.

[22] T. Pietraszek and C. Berghe, “Defending against Injection Attacks
through Context-Sensitive String Evaluation,” in Recent Advances in
Intrusion Detection (RAID), 2005.

[23] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic, “Noxes: A client-
side solution for mitigating cross-site scripting attacks,” in Proceedings
of the 12th ACM Symposium on Applied Computing, 2006.

[24] G. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “Using parse tree
validation to prevent sql injection attacks,” in SEM ’05: Proceedings of
the 5th international workshop on Software engineering and middleware.
New York, NY, USA: ACM, 2005, pp. 106–113.

[25] C. Bockermann, M. Apel, and M. Meier, “Learning sql for database
intrusion detection using context-sensitive modelling,” in Detection of
Intrusions and Malware, and Vulnerability Assessment, vol. Volume
5587/2009. Springer Berlin / Heidelberg, 2009, pp. 196–205.

[26] F. Valeur, D. Mutz, and G. Vigna, “A Learning-Based Approach to
the Detection of SQL Attacks,” in Proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment
(DIMVA), Vienna, Austria, July 2005, pp. 123–140.

[27] W. G. J. Halfond and A. Orso, “Amnesia: analysis and monitoring
for neutralizing sql-injection attacks,” in ASE ’05: Proceedings of
the 20th IEEE/ACM international Conference on Automated software
engineering. New York, NY, USA: ACM, 2005, pp. 174–183.

[28] J. Han and M. Kamber, Data Mining: concepts and techniques. Morgan-
Kauffman, 2000.

[29] H. Simon, “On a class of skew distribution functions,” Biometrika,
vol. 42, no. 3-4, pp. 425–440, 1955.

[30] Sla.ckers, “Diminutive xss worm replication contest,” Available online
at http://sla.ckers.org/forum/read.php?2,18790,18790, 2008.

[31] F. Amigoni, F. Basilico, N. Basilico, and S. Zanero, “Integrating partial
models of network normality via cooperative negotiation: An approach
to development of multiagent intrusion detection systems,” pp. 531–537,
2008.

45

